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Abstract

Artificial life aims to understand the fundamental principles
of biological life by creating computational models that ex-
hibit life-like properties. Although artificial life systems show
promise for simulating biological evolution, achieving open-
endedness remains a central challenge. This work inves-
tigates mechanisms to promote exploration and unbounded
innovation within evolving populations of Lenia continu-
ous cellular automata by evaluating individuals against each
other with respect to distinctiveness, population sparsity, and
homeostatic regulation. Multi-objective ranking of these in-
trinsic fitness objectives encourages the perpetual selection
of novel and explorative individuals in sparse regions of the
descriptor space without restricting the scope of emergent be-
haviors. We present experiments demonstrating the effective-
ness of our multi-objective approach and emphasize that in-
trinsic evolution allows diverse expressions of artificial life
to emerge. We argue that adaptive exploration improves evo-
lutionary dynamics and serves as an important step toward
achieving open-ended evolution in artificial systems.

Introduction
The emergence of complex lifeforms in nature can be at-
tributed to billions of years of evolutionary innovation. This
process relies on the ability to continually produce nov-
elty without limit, a characteristic known as open-endedness
(OE). However, achieving OE in artificial life (ALife) sys-
tems remains a central challenge that is fundamental to repli-
cating biological complexity and discovering new forms of
intelligence. Most artificial systems fail to enable the de-
gree of unbounded innovation seen in biology while even
the definition of OE remains debated, highlighting the need
for concrete definitions and robust metrics to appropri-
ately identify open-ended behavior in ALife (Stepney, 2021;
Banzhaf et al., 2016; Stepney and Hickinbotham, 2024).

Despite these definitional challenges, this work serves as a
practical step toward achieving OE in ALife. We investigate
how multi-objective optimization of intrinsic fitness objec-
tives serves as a method for enabling adaptive exploration in
evolutionary simulations. We rank individuals against each
other to encourage innovation without restricting the scope
of emergent behaviors. Through multi-objective ranking,

we enable thorough exploration of individuals that represent
different tradeoffs in the search space. We find that this in-
trinsic multi-objective approach produces a diverse popula-
tion of artificial lifeforms and may enable sustained innova-
tion and open-ended evolution in ALife.

Lenia and Leniabreeder

Lenia (Chan, 2018), a family of continuous cellular au-
tomata, is a promising platform for exploring OE in AL-
ife. Lenia generalizes Conway’s Game of Life by using
continuous states and differentiable update rules based on
convolution. It models complex, life-like patterns and emer-
gent behaviors through iterative applications of these rules
on a grid. Lenia patterns have demonstrated capabilities
such as self-organization, homeostatic regulation, locomo-
tion, entropy reduction, growth, adaptability, and evolvabil-
ity (Chan, 2020). This positions Lenia as the ideal testbed
for investigating the fundamental mechanisms that drive
complexity and novelty in evolutionary systems.

The Leniabreeder framework (Faldor and Cully, 2024)
further enhances Lenia by integrating Quality-Diversity
(QD) algorithms to facilitate the selection of diverse and
high-performing patterns in evolving populations of Lenia.
Leniabreeder utilizes a Variational Autoencoder (VAE) to
represent patterns in a latent descriptor space, enabling the
comparison of phenotypes. The AURORA QD algorithm
(Grillotti and Cully, 2022) extends this approach by uti-
lizing diversity in the VAE latent space to guide selection.
Leniabreeder’s unsupervised learning techniques and auto-
mated feature discovery are fundamental to enabling OE,
allowing the system to adapt without human intervention.
Our work utilizes the open-source Leniabreeder framework
and AURORA QD algorithm to evolve populations of Lenia
patterns.

Open-Endedness

Banzhaf et al. (2016) have proposed a framework in which
OE can be defined as three types of novelty:



Type Definition
Type-0 Variation within the model.
Type-1 Innovation that changes the model.
Type-2 Emergent changes to the meta-model.

In this paper, we define OE as the continual production
of novelty of these types (Banzhaf et al., 2016; Stepney,
2021; Taylor et al., 2016). Our approach specifically aims
to promote Type-0 variation and Type-1 innovation, utiliz-
ing Leniabreeder’s VAE latent space to capture behavioral
diversity within the population. However, OE remains chal-
lenging to precisely define and measure as true open-ended
behavior will effectively move outside any predefined mea-
sures of OE, making attempts to quantify OE potentially
trivial (Stepney and Hickinbotham, 2024). We will instead
focus on exploring underlying mechanisms that promote the
continual production of novelty described to exhibit open-
ended behavior by the above definition.

Intrinsic Evolution

Systems that utilize internal mechanisms to guide evolu-
tion are considered to be intrinsic, as the fitness landscape
is shaped by the system’s current state rather than pro-
gressing toward a predetermined goal. Intrinsic evolution
enables complexity and diversity to emerge, mirroring the
open-ended dynamics of natural evolution. This approach is
promising in its ability to guide systems toward meaningful
innovation, and has been shown to promote OE in founda-
tional ALife literature.

Novelty search (Lehman and Stanley, 2011), for instance,
abandons objectives and instead rewards behavioral nov-
elty. This approach demonstrates efficacy in tasks such as
maze navigation and biped locomotion. By abandoning ex-
plicit fitness objectives, novelty search enables a continual
increase in complexity. This concept is extended in Flow Le-
nia, a mass-conservative extension of Lenia, where Plantec
et al. (2023) enable multi-species simulations to drive in-
trinsic evolutionary processes through competition and sym-
biosis. Furthermore, Reinke et al. (2019) explore intrin-
sically motivated goal exploration processes (IMGEPs) in
self-organizing systems like Lenia, emphasizing the auto-
mated discovery of diverse patterns. Their IMGEP-OGL al-
gorithm utilizes deep auto-encoders and achieves efficiency
comparable to pretrained systems, highlighting the power
of unsupervised learning in uncovering novel self-organized
structures.

Together, these approaches emphasize the potential for
evolution driven by intrinsic processes and autonomous ex-
ploration to replicate the open-ended creativity of natural
systems. Decoupling evolution from fixed objectives has
proven to aid the emergence of life-like behaviors in arti-
ficial environments. We utilize this philosophy in the design
of our multi-objective fitness mechanism, enabling divergent
evolution guided by exploration.

Methodology
We evaluate individuals with respect to three objectives:
homeostasis, distinctiveness, and population sparsity. These
objectives capture notions of behavioral diversity within the
population and promote individuals with complex internal
structure in underexplored regions of the descriptor space.
Their intrinsic nature allows the system to evolve in accor-
dance with its own evolutionary activity.

Homeostasis rewards stable artificial lifeforms, compara-
ble to those in biological life. We calculate latent variance
of an individual, measuring stability in the latent space rep-
resentation across n timesteps

f1 = − 1

n

n∑
i=1

|z⃗i − ¯⃗z| (1)

where z⃗i are latent encodings and ¯⃗z is their mean. Distinc-
tiveness encourages novelty relative to preexisting individ-
uals. We calculate latent mean distance, measuring diver-
gence from average behavior

f2 = |¯⃗z − E[¯⃗z]| (2)

where ¯⃗z is the mean latent encoding of an individual. Popu-
lation sparsity rewards individuals in underexplored regions
of the descriptor space. We calculate the density of the de-
scriptor space using a radial basis function (RBF) kernel

f3 = −
∑

a∈archive

exp

(
−|d⃗− d⃗a|2

2σ2

)
(3)

where d⃗ is the descriptor vector and σ is the kernel width.
Together these intrinsic objectives formulate the multi-

objective problem; balancing them is crucial for producing
meaningful populations of Lenia patterns through evolution.
Optimizing for homeostatic regulation alone offers no adap-
tive or explorative benefits, while optimizing solely for ex-
ploration would result in patterns that explode or dissipate,
eliminating the biological relevance of our study. However,
these objectives together show promise for enabling greater
exploration of self-regulating patterns in the search space.
The clear tradeoffs between these objectives highlight the
potential for multi-objective optimization to loosely guide
evolution toward the discovery of innovative artificial life-
forms.

We implement a domination count fitness mechanism to
rank members of the population against those in the archive
— the set of previously generated patterns — based on these
objectives. Domination count ranking is simple yet elegant
in its ability to promote adaptive exploration, as ranking in-
dividuals against each other exhibits the relative selection
needed to continually produce novelty. Domination count of
an individual x is calculated as

d(x) = |{y ∈ A | y ≺ x}| (4)



Figure 1: Patterns evolved in Leniabreeder using intrinsic multi-objective ranking.

where A is the set of archived individuals. An individual y
is said to be dominated by x, denoted y ≺ x, if x is bet-
ter than or equal to y in all objectives, and strictly better in
at least one objective. The final fitness score of an individ-
ual is their negative domination count, so solutions domi-
nated by fewer archive members are considered fitter. This
approach maintains a diverse set of individuals represent-
ing different trade-offs between objectives, thereby fostering
greater exploration of the solution space. By ranking indi-
viduals against each other, there is no pressure on the system
to converge toward a final goal, but rather exploration of the
search space is promoted (Lehman and Stanley, 2011).

We compare our multi-objective ranking approach to
the single-objective homeostasis fitness function in Equa-
tion (1). This comparison enables investigation into the ef-
fects of explorative objectives and domination count rank-
ing. We conducted 50 trials for each approach, evolving
2500 generations with batch sizes of 256 and a repertoire
size of 1024. We recorded the mass, repertoire variance, and
complexity of individuals throughout the evolutionary pro-
cess. Mass is calculated as the zeroth spatial moment, or
total sum of all cell values across all channels, represent-
ing the total life content in a pattern. Repertoire variance
is calculated as the latent variance across solutions for the
last timestep, giving a measure of phenotypic diversity. Fi-
nally, we calculate complexity as the gzip compression size
of phenotypes across all frames. This serves as an approx-
imation of Kolmogorov complexity, the size of the shortest
program that can reproduce a pattern’s behavior.

Results and Discussion
We report the average mass, repertoire variance, and com-
plexity of individuals across the final populations. Multi-

objective ranking displayed increased mass, variance, and
compressibility compared to the homeostasis implementa-
tion. Table 1 summarizes the quantitative results from our
experiments.

Metric Homeostasis Multi-Objective ∆
Mass 3.268 3.292 +0.73%

Variance 1.093 1.103 +0.91%
Complexity 3.861 3.820 -1.06%

Table 1: Results of homeostasis and multi-objective fitness
mechanisms across all individuals in final repertoires.

These results indicate enhanced evolutionary dynamics
that foster greater exploration of the search space in the
multi-objective approach. The deviations in average mass,
variance, and complexity between the two approaches each
demonstrated statistical significance (all p < 0.001) using
pooled two-sample t-tests. The observed increase in av-
erage mass suggests that our approach successfully pre-
served life content and potentially adaptive traits. Simi-
larly, the increase in repertoire variance confirms greater
diversity within the populations evolved through intrinsic
multi-objective ranking. The observed reduction in com-
plexity, coupled with increased mass and variance, points
to the emergence of patterns exhibiting greater modular in-
ternal structure and avoidance of trivial complexification as
the system continually innovates without converging on a
fixed goal. These results highlight the effectiveness of intrin-
sic multi-objective ranking in enabling adaptive exploration
without compromising on meaningful homeostatic regula-
tion.

We observed subtle qualitative differences between indi-



Figure 2: Temporal progression of three patterns start-
ing from the “Aquarium” phenotype (pattern id 5N7KKM)
(Chan, 2020; Faldor and Cully, 2024).

vidual patterns evolved through both approaches, and at-
tribute diversity in the homeostasis approach to the AU-
RORA QD algorithm. However, multi-objective ranking
yielded patterns with greater structural variety and enhanced
internal modularity, displayed in Figure 3. Figure 2 show-
cases the behavior of such patterns over multiple timesteps.
These patterns maintain complex internal structure through
time and vary from each other, demonstrating the potential
for intrinsic multi-objective ranking to promote greater vari-
ation and innovation within evolving ALife populations. By
simultaneously optimizing for homeostasis, distinctiveness,
and sparsity, the system generates novelty while preserving
stability. This balance allows a population of diverse artifi-
cial lifeforms to emerge through adaptive exploration.

Future Work
Our findings highlight several promising directions for fu-
ture research. We intend to apply established measures of
open-ended dynamics, such as Bedau and Packard’s evolu-
tionary activity test (Bedau et al., 1997) and the MODES
toolbox (Dolson et al., 2019), to quantify OE in our system.
We posit that more comprehensive measures of OE will of-
fer important insights into the open-ended nature of various
evaluation mechanisms in evolutionary computation. Addi-
tionally, we aim to explore more advanced fitness objectives,
such as homeodynamic regulation in place of homeostasis,
potentially fostering artificial lifeforms with more intricate
and adaptive internal structures. We plan to introduce en-
vironmental pressures to assess the system’s adaptive com-
plexity, hypothesizing that intrinsic multi-objective ranking
will outperform a baseline QD algorithm in discovering in-
novative solutions. Lastly, given the relatively small scale of
our experiments, we anticipate that intrinsic multi-objective
ranking at scale will display emergent capabilities analogous

to those observed in evolutionary biology.

Conclusion
This study demonstrates that intrinsic multi-objective rank-
ing enables adaptive exploration in artificial life, serving as a
step toward achieving open-endedness in evolutionary com-
putation. We find that intrinsic fitness objectives encour-
age variation and innovation in evolving populations of Le-
nia. By ranking individuals against each other, we enable
greater diversity and exploration of the search space unre-
stricted by bounded fitness functions. The theoretical ad-
vantages of intrinsic multi-objective ranking in promoting
exploration, coupled with experimental results, indicate that
our approach can promote the continual production of nov-
elty in evolutionary search.

Our contribution extends beyond performance gains to of-
fer a novel methodological framework for enabling open-
endedness by promoting autonomous exploration and de-
creasing reliance on manual feature design. By aligning fit-
ness objectives with intrinsic characteristics of living sys-
tems, we foster ongoing innovation akin to natural evolu-
tion. Our approach applies explorative mechanisms inspired
by biological evolution to artificial life, bringing us closer to
achieving open-endedness in evolutionary computation.
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