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Abstract

Neural compression is fundamental to cognition, enabling intelligence
to emerge in biological systems. Mapping high-dimensional data to latent
representations requires compression, transforming structural complexity
along distinct dimensions. We investigate how two distinct measures of
complexity, effective rank and Kolmogorov complexity, transform under
neural autoencoder compression. We analyze encoding mechanisms, ex-
amine architectural properties that enable complexity preservation, and
consider implications of our work in machine learning and cognitive sci-
ence. Through theoretical analysis, we characterize how different dimen-
sions of structural complexity can be preserved through compression and
conditions in which compression necessarily degrades complexity. This
reveals how learned representations retain complex structure, with impli-
cations for understanding both artificial and biological neural systems.

1 Introduction

Compression is fundamental to cognition, enabling intelligence to emerge in bio-
logical systems constrained by neural bandwidth and homeostasis. Yet mapping
high-dimensional data to low-dimensional representations necessarily transforms
structure. Autoencoders are a class of neural architectures that encode high-
dimensional inputs into low-dimensional latent representations, then reconstruct
the original data with minimal information loss. This process of latent encoding
informs our understanding of machine learning theory and brain processes such
as efficient neural coding and cognitive abstraction.

Compression necessarily transforms structure though complexity itself is
multidimensional rather than scalar. This work investigates how structural
complexity is preserved through neural compression by analyzing two orthog-
onal measures: effective rank, which quantifies geometric dimensionality, and
Kolmogorov complexity, which measures algorithmic regularity. Compressed
representations may preserve these notions of structure differently, as a simple
representation along one dimension may be intricate along another. This raises
a fundamental question: how can the structural complexity of information be
preserved through compression?



We guide our theoretical exploration with the following questions:

RQ1: When do effective rank and Kolmogorov complexity yield contradictory
complexity assessments through neural compression?

RQ2: What mechanisms enable independent transformation of geometric and
algorithmic complexity through nonlinear compression?

RQ3: What constraints determine complexity preservation in neural compres-
sion, and what does this reveal about learned representations?

2 Methods

2.1 Autoencoder Architecture
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Figure 1: Autencoder architecture visualized.

An autoencoder maps high-dimensional inputs X € R™ to low-dimensional
latent codes Z € R™ (where n < m) and back to X € R™. To accomplish this,
X is passed through an encoder, which returns a latent Z to be passed through
the decoder to reconstruct X € R™.

The autoencoder is then trained to minimize reconstruction loss:

L. ¢) = IX - X|? (1)

where # and ¢ are the learnable parameters of the encoder and decoder
neural networks, respectively.

Autoencoders are high performers across tasks involving data compression
and reconstruction'. Encoders act as feature extractors that capture irreducible
structure, serving as a foundation of modern deep learning. Furthermore, au-
toencoders are effective anomaly detectors by identifying outliers through high
reconstruction error. Autoencoders are a valuable tool across fields from repre-
sentation learning to generative modeling.

1Bank, Dor, Noam Koenigstein, and Raja Giryes. ” Autoencoders.” Machine learning for
data science handbook: data mining and knowledge discovery handbook (2023): 353-374.



2.2 Complexity

Complexity science studies systems with emergent collective behavior. This
spans from weather patterns and bird flocking behavior to neural networks
and consciousness. Central to this field is recognizing complexity as a multi-
dimensional concept unable to be represented by a scalar value. Consider how a
compressed representation of information might be simple along one dimension
while remaining intricate along another. This multidimensionality is not a flaw,
but rather a feature of complex systems’ fundamental nature. The multidimen-
sionality of complexity motivates this work to understand structure through
compression as it may inform our understanding of information’s intrinsic form.
We focus our analysis on structural complexity in particular, as the organiza-
tional properties of information are fundamental to preserve through compres-
sion for later reconstruction. To understand how compression transforms the
structure of information, we focus our analysis on the encoding fy : R™ — R"
from input to latent representation. We measure both input data and latent
representations using two distinct measures of complexity outlined below.

2.2.1 Effective Rank

Effective rank, R, measures how many dimensions of a linear structure are
meaningfully utilized to store information. For a matrix X with singular values
01,02,...,0(4:

d
R(X) = exp < Zpi 1082]%‘) (2)

where p; = i/ ;0j normalizes each singular value. This quantifies how
uniformly information is distributed across dimensions, or entropy of singular
values. When singular values are concentrated in few dimensions, R is low.
Effective rank ranges from 1 (when data lies in one dimension) to d (when data
uniformly spans all dimensions), capturing the coordinative freedom and scale
of geometric structure across dimensions.

2.2.2 Kolmogorov Complexity

Kolmogorov complexity K represents the length of the shortest program that
generates a given string. Let us consider three example strings:

String Structure K

ababababab highly structured low
abcdezyxwv some structure medium
phsetivjwn unstructured high

Table 1: K increases with randomness.



The first example has an obvious structure and can be reduced to ab x 5,
giving it low K. The second string represents one with "moderate” descrip-
tive complexity. However, the third string is incompressible as it can only be
minimally described verbatim, and thus has high K. These example help us to
understand Kolmogorov complexity as intrinsic descriptive length?.

abcabcabc dybhurixc
abc x 3 dybhurixc
chars: 9-5 9-9

Figure 2: Minimal string descriptions with low K (left) and high K (right).

However, Kolmogorov complexity is uncomputable. To compute K would
require running all possible programs and determining which shortest program
generates a given string. This is impossible in practice as some programs will
run forever due to the halting problem®. As K is uncomputable, compression-
based approximation methods are often used in practice, such as measuring
Lempel-Ziv complexity, bit-level entropy, or gzip compression size. These are
sufficient for many practical cases, though we consider K abstractly for our
theoretical analysis as we are interested in properties of K and R rather than
specific computable approximations.

2.3 Approach

We conduct a theoretical analysis of how autoencoder compression transforms
effective rank and Kolmogorov complexity. The analysis highlights a funda-
mental architectural property, that nonlinear encoding enables complexity to
be stored explicitly in the latent representation Z or implicitly in learned en-
coder parameters 6.

We begin with linear compression as a baseline, then analyze how nonlin-
earity enable independent preservation of R and K. Finally, we identify the
architectural and optimization constraints that bound successful complexity
preservation.

3 Analysis

3.1 Linear Compression

Consider a linear encoding — no neural networks with learned parameters are
used. Instead, information is directly compressed from X to Z. In such cases,

2Fortnow, Lance. ”Kolmogorov complexity.” Aspects of Complexity (Short Courses in
Complexity from the New Zealand Mathematical Research Institute Summer 2000 Meeting,
Kaikoura). Vol. 4. 2001.

3Turing, Alan Mathison. ”On computable numbers, with an application to the Entschei-
dungsproblem.” J. of Math 58.345-363 (1936): 5.



effective rank and Kolmogorov complexity are consistent; linear compression
forces all complexity into latent coordinates. Thus, geometric dimensionality
and descriptive structure are necessarily reduced to the bottleneck dimension
n. An example of linear encoding is Principal Component Analysis (PCA), a
popular statistical learning technique which finds the optimal linear encoder for
high dimensional data. PCA demonstrates that for linear encoding, both R and
K are determined by the same singular values spectrum and directly capture
the distribution and its entropy, respectively. Hence, any linear compression
necessarily reduces both measures of complexity to the latent representation Z.

3.2 Nonlinear Compression Mechanisms

Nonlinear autoencoders use neural networks for encoding and decoding, intro-
ducing a new mechanism for preserving complexity through compression. Non-
linear autoencoders decouple R and K as a result of the nonlinear activation
functions of neurons within fy. Without nonlinear activation functions, a deep
neural network would effectively act as a linear model as the composition of
linear functions is necessarily another linear function. However, nonlinear acti-
vation functions like ReLLU allow neural networks to extract intricate features
from data. This nonlinearity is responsible for much of deep learning’s success
as it enables networks to learn abstract high-dimensional features of data.

As with linear encoding, nonlinear encoders compress information from X to
Z. Thus, Z can explicitly preserve information. However, nonlinearity enables
regularities to be captured by the learned encoder network fy. This implicit
information storage takes a very different form from that of the latent space,
and may preserve algorithmic notions of complexity like K different to those
captured in Z. The interplay of these two systems enables K and R to be pre-
served through compression with greater degrees of freedom. Patterns with low
K can be learned into parameters #, while Z may store intrinsic dimensionality
R. Latent compression enforces n < m, bounding R(Z) < min(n, R(X)) and
exploiting algorithmic structure through learned parameters 6.

3.3 Preserving Structural Complexity

Nonlinear autoencoders can preserve different dimensions of complexity through
distinct mechanisms. The key insight is that complexity can either be stored
explicitly in the latent representation Z, or implicitly in the learned parame-
ters 6. This enables different dimensions of complexity to be preserved among
different parts of the autoencoder architecture. We consider below how each
structural complexity measure might be partitioned.

3.3.1 Geometric Structure

To understand how R can be preserved through compression, we must first un-
derstand the geometry of high-dimensional data. A manifold is a space that
locally resembles Euclidean space even if its global structure is more complex.



A manifold can be thought of as locally flat, such that it behaves like standard
Euclidean space in some dimension d. This dimension d is the manifold’s intrin-
sic dimensionality. Hence, An example is Earth’s surface, a 2D manifold despite
being a sphere in 3D space.

Figure 3: Swiss roll manifold, where local 2D Euclidean space is curved in 3D.

Consider the Swiss roll manifold in Figure 3, a 2D surface represented in 3D.
Although only two coordinates are needed to specify position on the surface,
the curvature of the space causes the representation to use all three dimensions.
Linear compression methods like PCA cannot compress such a structure without
extreme information loss. Projecting the Swiss roll linearly would collapse the
spiral’s layers, destroying the very structure necessary to preserve for learning.

Nonlinear encoders, however, can unfold curved manifolds where R reflects
intrinsic structure rather than input space dimensionality. fy can learn to unroll
the Swiss roll due to nonlinearity, achieving R(Z) = 2 while preserving geometric
form. In this example, the mechanism succeeds when the latent dimension
n > 2, large enough to accommodate the manifold’s intrinsic geometry, allowing
the compressed representation Z to capture intrinsic geometric dimensionality
while parameters in fy learn regularities that are descriptive of the structural
form.

3.3.2 Algorithmic Regularity

Recall that Kolmogorov complexity measures the length of the shortest pro-
gram that generates a given string. When data possesses exploitable regularity
(patterns that can be captured algorithmically), the encoder can learn these
rules into # rather than storing their output in Z. The latent representation



then becomes parameterized coordinates over learned structure rather than a
raw encoding of the data itself.

An autoencoder can learn to decompose structure such that shared infor-
mation is absorbed into the encoder’s parameters ¢, while the latent Z stores
only the instance-specific information. This achieves K(Z) < K(X) because in-
dividual latent vectors no longer encode the full specification. The compressed
structure that reconstructs data now resides implicitly in the learned weights
and captures regularities across the dataset.

This mechanism fundamentally depends on K(X) < |X|, meaning com-
pressible structure exists for fy (and inversely fy) to learn. For unstructured or
random data where K (X) =~ | X|, no such regularity exists and thus each sample
is incompressible. In this case, the encoder must store information explicitly in
Z, maintaining K(Z) = K(X) though subject to information loss imposed by
n << m.

3.4 Limitations
3.4.1 Latent Dimension

The relationship between the input dimension m, latent dimension n, and in-
trinsic dimensionality d determines how complexity is transformed through com-
pression:

(i) n < d: Information loss is necessary as the latent representation cannot
preserve all dimensions of intrinsic structure.

(i1) n =~ d: Optimal for nonlinear dimensionality reduction, as R(Z) can pre-
serve geometric structure while patterns may extract to 6.

(#i) n > d: Susceptible to overfitting as overparameterization eliminates pres-
sure to learn generalizable regularities.

3.4.2 Learning Dynamics

The autoencoder loss function £(6, ¢) optimizes to minimize reconstruction er-
ror, blind to the preservation of structural complexity through compression.
This indirect relationship between optimization and preserving complexity of-
fers insight into how autoencoders preserve structure in practice.

The latent dimension imposes the constraint R(Z) < n, but does not inform
how effectively geometric structure is preserved within this bound. When n > d,
the encoder has sufficient capacity to unfold curved manifolds while preserving
intrinsic geometry, with R(Z) bounded by d < R(Z) < n. Achieving R(Z) =~
(d) requires either explicit regularization or implicit pressure from optimization
dynamics. In representations aimed to minimize reconstruction error, the loss
function drives geometric preservation indirectly.

Descriptive complexity operates differently as it is implicitly stored through
learned weights in fy when pattern extraction improves reconstruction. How-
ever, still only reconstruction loss is considered. Thus, in optimization settings,



patterns are learned because they minimize £(6, ¢), not inherently because they
simplify the representation.

This reveals the fundamental asymmetry in how autoencoder compression
transforms complexity. The loss function determines what structure is preserved
based on reconstruction utility, not intrinsic complexity. Thus, R can be pre-
served when the latent dimension accommodates intrinsic dimensionality and
fo learns to unfold manifold structure, while K reduces only when pattern ex-
traction to € improves reconstruction. However, since complexity is preserved
only when aiding reconstruction, theoretical capacity limits are not necessarily
realized through naive optimization of £(8, ¢) alone.

3.5 Addressing Research Questions

RQ1: When do effective rank and Kolmogorov complexity yield contradictory
complexity assessments through neural compression?

Effective rank and Kolmogorov complexity yield contradictory assessments
when nonlinear compression decouples geometric and algorithmic structure.
This decoupling can be attributed to exploitable regularity (K(X) < |X|) on
a manifold with intrinsic dimensionality d and latent dimension n satisfying
n > d. Under these conditions, algorithmic patterns extract to learned param-
eters 6 while intrinsic geometric is explicitly stored in Z, enabling algorithmic
compression K(Z) < K(X) while R(Z) ~ d. The orthogonal preservation of
structural complexity emerges because descriptive complexity decreases through
pattern extraction while geometric dimensionality is preserved through explicit
storage enabled by nonlinearity within learned parameters 6.

Conversely, linear compression necessarily forces consistency. Any linear
transformation maps singular value structure directly to both R and K, neces-
sarily correlating preservation of the two complexity measures. Thus, indepen-
dent preservation of both structural complexity notions requires nonlinearity as
a necessary condition, with data structure and architectural capacity as suffi-
cient conditions.

RQ2: What mechanisms enable independent transformation of geometric and
algorithmic complexity through nonlinear compression?

The fundamental mechanism enabling learned preservation across the au-
toencoder architecture is the decomposition of complexity across the latent rep-
resentation Z and learned parameters 6. This partitioning of the autoencoder
architecture, a result of nonlinearity, enables independent preservation of R and
K.

Manifold unfolding allows R to reflect intrinsic geometric complexity rather
than input dimensionality. When n > d, nonlinear activation functions enable fy
to learn coordinate transformations that unwrap curved manifolds, preserving
geometric form despite dimensional reduction. This operates on the explicit
representation Z, storing the unfolded manifold representation.



For algorithmic complexity, pattern extraction absorbs shared regularities
into encoder weights. When K (X) < |X]|, recurring descriptive structure gen-
eralizes into 6 while Z stores only instance-specific parameters over this learned
structure. This achieves K (Z) < K(X) through implicit encoding as the algo-
rithmic structure resides in the network weights rather than the latent space.

RQ3: What constraints determine complexity preservation in neural compres-
sion, and what does this reveal about learned representations?

Complexity preservation through neural compression is governed by archi-
tectural capacity and optimization objectives. These constraints differ as ar-
chitectural capacity determines theoretical limits while optimization objectives
determine practical realization of these bounds.

Capacity constraints establish necessary conditions for preservation. Ge-
ometric complexity requires n > d, ensuring sufficient latent dimensionality
to accommodate intrinsic manifold structure. Algorithmic complexity requires
K(X) < |X|, ensuring exploitable regularity exists in the data. When these
conditions fail, total preservation of information becomes impossible regardless
of optimization techniques; a latent space n < d cannot fully represent intrinsic
geometry d, and incompressible data with K (X) ~ |X| offers no generalizability.

However, satisfying these capacity constraints does not guarantee preserva-
tion either. The reconstruction objective £(6, ¢) = || X — X||? drives complexity
preservation only when it improves reconstruction. Geometric structure unfolds
through fy because such representations minimize reconstruction error, not be-
cause they preserve intrinsic dimensionality. Similarly, patterns extract to 6
because shared regularities reduce loss across the dataset, not because they sim-
plify individual representations. This loss-centric optimization process is blind
to complexity preservation, treating it as a mere byproduct of reconstruction
utility.

This reveals learned representations as fundamentally task-centric rather
than structure-centric. Autoencoders discover minimally sufficient encodings
that preserve only the structural dimensions necessary for their objective func-
tion. The decoupling of R and K demonstrates that different tasks may re-
quire preserving different structures, with the optimization objective guiding
the learning process. Hence, representation learning is not about capturing
intrinsic data structure but about discovering task-relevant structure. Intelli-
gence, from this view, emerges from representations that are minimally complex
yet structured in ways that enable reuse.

4 Discussion

We now situate our findings of complexity transformation through neural com-
pression within existing literature in machine learning and cognitive science. We
specify mechanisms behind the manifold hypothesis and illuminate what makes
for useful representations, then explore whether similar compression principles
shape biological neural coding and abstraction.



4.1 Machine Learning
4.1.1 The Manifold Hypothesis

The manifold hypothesis theorizes that natural high-dimensional data lies near
low-dimensional manifolds embedded within high-dimensional space.* This ex-
plains why dimensionality reduction succeeds in practice and motivates modern
deep learning. However, while the hypothesis regards the existence of mani-
folds, it does not specify mechanisms that may enable their recovery through
compression.

Our analysis identifies that manifold preservation requires not only existence
of intrinsic dimension d, but that the encoder utilizes its nonlinear capacity. The
Swiss roll example illustrates this, as linear encoding achieves low R by destroy-
ing the manifold structure while nonlinearity enables learned transformations
of curved structure to flat Euclidean space.

This suggests a potential limitation in practical optimization settings. As re-
lying on loss during training prioritizes evaluation reconstruction accuracy over
true geometric learning, explicitly learning to preserve structure (e.g., R(Z)
relative to intrinsic dimensionality) may prove to be advantageous. Reconstruc-
tion quality would come as a byproduct of successful geometric preservation
R(Z) =~ d through compression.

4.1.2 Representation Learning

Representation learning aims to discover encodings that extract meaningful fea-
tures from data and enable effective task performance. Our analysis reveals the
task-centric nature of learned representations, preserving only minimally suffi-
cient complexity to later reconstruct. The reconstruction loss merely preserves
dimensions of complexity that improve reconstruction rather than attempting
to learn the intrinsic structure.

Furthermore, different tasks exploit various notions of structural complex-
ity. Geometric tasks such as clustering benefit from high R(Z), preserving
distributed structure in latent coordinates. On the other hand, generative tasks
benefit from low K(Z), extracting patterns to neural network parameters. We
find this to inform our understanding of how the same autoencoder trained
with different loss functions may discover different minimally sufficient repre-
sentations.

This task-dependent nature of useful representations may explain unstable
disentanglement metrics in unsupervised learning, with research finding disen-
tanglement scores to vary dramatically across random seeds and hyperparam-
eters®. Our analysis suggests why: optimizing for reconstruction loss gives the

4Fefferman, Charles, Sanjoy Mitter, and Hariharan Narayanan. ”Testing the manifold
hypothesis.” Journal of the American Mathematical Society 29.4 (2016): 983-1049.

5Locatello, Francesco, et al. ”Challenging common assumptions in the unsupervised learn-
ing of disentangled representations.” international conference on machine learning. PMLR,
2019.
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encoder freedom in how it shares learned structure between Z and 0. Each train-
ing run discovers a different solution, with all achieving similar reconstruction
while distributing structure differently across the neural architecture. Disen-
tanglement metrics thus measure task-dependent structure rather than intrinsic
compositionality.

This shifts how we evaluate representations. Rather than considering how
much information is preserved, good representations consider which complexity
dimensions to preserve and for what purpose? Useful representations preserve
structure that composes well: high R enables geometric task performance, while
patterns learned in 6 enable generalization capabilities. Representations morph
according to task structure, promoting flexible reuse of learned components.

Representation quality is fundamentally relational rather than intrinsic. No
representation is universally "good” as quality depends on alignment between
preserved complexity and task requirements. Deep learning succeeds by discov-
ering representations that are minimally complex yet structured for composi-
tional reuse across tasks. Intelligence emerges not from maximal information
preservation, but from selective preservation of task-relevant structure.

4.2 Cognitive Science and Intelligence
4.2.1 Efficient Coding and Neural Compression

The efficient coding hypothesis® posits that neural systems maximize informa-
tion transmission while minimizing metabolic cost. This principle has shaped
neuroscience for decades. However, while efficient coding predicts compression,
it does not specify which dimensions are compressed and preserved. Through
our theoretical analysis, we find structural complexity of different forms to be
learnable by different components of neural compression systems, offering in-
sight into structural preservation through efficient neural coding mechanisms in
the brain.

Biological systems face metabolic constraints, and optimally preserve com-
plexity with respect to its relevance as seen with autoencoder optimization tech-
niques. If biological neural systems preserve structure in a similar manner to
their artificial counterparts, our analysis predicts they should preserve geometric
structure supporting spatial cognition while extracting algorithmic regularities
to synaptic firing patterns. Furthermore, metabolic regulation creates pressure
to learn efficient relations, implicitly driving structural preservation akin to the
autoencoder loss function.

Our findings position metabolic efficiency as indirect pressure to compress
and preserve only the necessary structure that contributes to reconstruction.
Natural sensory input to biological brains often contain high-dimensional struc-
ture with exploitable regularities. Systems under metabolic constraints cannot
preserve all structural dimensions, thus having to make the same tradeoffs as
autoencoders with limited capacity. As with autoencoders, it may be the case

SBarlow, Horace B. ”Possible principles underlying the transformation of sensory mes-
sages.” Sensory communication 1.01 (1961): 217-233.
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that the optimal strategy is dependent on the reconstruction task. We expect
selective compression across neural systems to follow from our analysis. Dif-
ferent brain regions likely sacrifice different dimensions of complexity based on
practical necessity. Efficient coding can be understood as the selective encod-
ing process where systems preserve specific structure rather than maximizing
information retention.

Biological systems minimize their objective combining reconstruction accu-
racy with metabolic cost proportional to neural firing activity. This creates
architectural pressure toward sparse activity patterns and stable connection
weights, analogous to the latent dimension of the autoencoder architecture. Im-
portantly, neural dynamics operate on asynchronous timescales. As a result,
rapid neural activity encodes instance-specific information while Hebbian learn-
ing of synaptic plasticity reinforces recurring patterns over time. In practice, this
timescale separation may realize the decomposition of learned structure among
neural weights and latent information. If this framework holds, we predict:

1. Neural representations should exhibit task-dependent complexity preser-
vation, transforming structure differently across brain regions (i.e., spe-
cialized regions for geometric vs. predictive coding)

2. Hebbian learning should encode regularities into connection weights

3. Metabolic regulation should correlate with learned synaptic structure,
bounding practical realization of learned structural preservation

Though empirical validation of these possible neuroscientific implications
extends beyond the scope of this work, our theoretical framework offers an
explanation of how efficient coding might preserve complexity of information
within the brain.

4.2.2 Abstraction and Hierarchical Learning

Abstraction is often described as a process of simplifying cognitive thought by
discarding specifics and reducing information to its generalized form”. Our anal-
ysis gives mathematical form to this intuition, demonstrating how abstraction
and algorithmic compression alike share structure in learned representations,
preserving essential features while discarding unnecessary details.

Consider how abstraction operates as a computational mechanism. Rather
than encoding complete high-dimensional data, abstract representations become
regularity over learned structure. For example, the string “ababababab” with
low K reduces effectively through pattern extraction to #. In this example,
algorithmic structure resides in the network weights rather than the latent rep-
resentation itself; abstract representations similarly compress information with
respect to descriptive complexity.

7<“Abstraction.” EBSCO Research Starters, www.ebsco.com/research-starters/religion-
and-philosophy /abstraction. Accessed 15 Nov. 2025.
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Figure 4: An illustration of cognitive abstraction.

Systems capable of learning abstractions utilize this mechanism when ex-
ploitable regularity exists (K (X) < |X]). As the encoder discovers recurring
patterns, they can be compressed into neural weights to reduce representational
complexity. Furthermore, the latent Z may store only the minimal parameters
needed to specify the encoding instance. This relation parallels the interplay of
working memory and learned pattern recognition in human cognition.

Hierarchical abstraction emerges from recursive abstraction. Each phase
(or layer) extracts structure from the prior phase, storing them in nonlinear
space. This composition enables progressively abstract representations. Early
layers might extract local features while deeper layers extract compositional pat-
terns, aligning with how convolutional neural networks extract relevant features
through deep learning®.

Few-shot learning, that is, learning from a limited number of samples, be-
comes tractable when considering representations with low K structure only
requiring further knowledge instance-specific parameters over pre-existing struc-
ture. Furthermore, skill and knowledge transfer across tasks is likely to succeed
when domains share structural properties. However, useful abstraction again re-
quires K(X) < |X]|, as random unstructured data offers no regularity to learn.

Hence, intelligence emerges from discovering which dimensions of complexity
to preserve for a given task. This goes against the notion that intelligence
correlates with maximal information, instead suggesting its correlation with
minimally sufficient information.

5 Conclusion

Using autoencoders as the subject of theoretical analysis, we explore how struc-
tural complexity transforms under neural compression, analyzing two orthogonal

8Li, Zewen, et al. ”A survey of convolutional neural networks: analysis, applications,
and prospects.” IEEE transactions on neural networks and learning systems 33.12 (2021):
6999-7019.
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measures: effective rank and Kolmogorov complexity. These notions of com-
plexity measure geometric dimensionality and algorithmic regularity of data,
respectively. Our analysis reveals the fundamental preservation mechanisms of
linear and nonlinear compression. Linear encoding necessarily reduces both R
and K proportionally, forcing all complexity into the latent representation Z.
Nonlinear encoding, however, enables independent transformation of these com-
plexity dimensions as geometric structure can be preserved explicitly in Z while
exploitable regularity is implicitly learned into the parameters 6. This compres-
sion and preservation of structure highly depends on algorithmic compressibility,
architectural capacity, and optimization dynamics.

Our findings frame learning as fundamentally goal-oriented, preserving struc-
ture of information only when it improves performance. Essential to intelligence
is the process of discovering which complexity dimensions to preserve for which
tasks. This principle extends beyond artificial neural networks, offering explana-
tions for cognitive abstraction and efficient neural coding in biological systems
where metabolic constraints drive selective preservation of relevant structure.
Learned representations are thus minimally complex yet structured in ways
that enable reuse.

Effective compression learns which dimensions of information are necessary
for reconstruction. The implications of this selective preservation of complexity
positions general intelligence as the ability to discover task-relevant structure
rather than preserve maximal information.
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