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Figure 1: Lenia patterns evolved through intrinsic multi-objective optimization.

ABSTRACT
Artificial life aims to understand the fundamental principles of bio-
logical life by creating computational models that exhibit life-like
properties. Although artificial life systems show promise for sim-
ulating biological evolution, achieving open-endedness remains a
central challenge. This work investigates mechanisms to promote
unbounded innovation within Lenia, a family of continuous cellular
automata, by evaluating individuals against each other with respect
to distinctiveness, homeostatic regulation, and population sparsity.
These intrinsic fitness objectives encourage the perpetual selec-
tion of novel individuals in sparse regions of the descriptor space
without restricting the scope of emergent behaviors. We present
experiments demonstrating the effectiveness of our multi-objective
approach and show that intrinsic fitness objectives allow diverse
expressions of artificial life to emerge. We argue that these results
are indicative of improved evolutionary dynamics and serve as an
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important step toward achieving open-ended evolution in artificial
systems.
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1 INTRODUCTION
The emergence of complex lifeforms in nature can be attributed to
billions of years of evolutionary innovation. This process relies on
the ability to continually produce novelty without limit, a charac-
teristic known as open-endedness (OE). However, achieving OE in
artificial life (ALife) systems remains a central challenge that is fun-
damental to replicating biological complexity and discovering new
forms of intelligence. Most artificial systems fail to enable the de-
gree of unbounded innovation and complexification seen in biology,
while even the definition of OE remains debated. More concrete
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definitions and robust metrics would be needed to appropriately
replicate and classify open-ended behavior in ALife [1, 11, 12].

This work investigates how multi-objective optimization of in-
trinsic fitness objectives may serve as a step toward achieving OE
in ALife simulations. We rank individuals against each other rather
than optimizing for a predefined goal to encourage innovation with-
out restricting the scope of emergent behaviors. We argue that this
intrinsic multi-objective approach may enable sustained innovation
and open-ended evolution in ALife.

1.1 Lenia and Leniabreeder
Lenia [3], a family of continuous cellular automata, is a promising
platform for exploring OE in ALife. Lenia generalizes Conway’s
Game of Life by using continuous states and differentiable update
rules based on convolution. It models complex, life-like patterns
and emergent behaviors through iterative applications of these
rules on a grid. Lenia patterns have demonstrated capabilities such
as self-organization, homeostatic regulation, locomotion, entropy
reduction, growth, adaptability, and evolvability [4]. This makes
Lenia an ideal testbed for studying OE in ALife.

The Leniabreeder framework [6] further enhances Lenia by inte-
grating Quality-Diversity (QD) algorithms to facilitate the selection
of diverse and high-performing patterns. Leniabreeder utilizes a
Variational Autoencoder (VAE) to represent patterns in a latent
descriptor space, enabling the comparison of phenotypes. The AU-
RORA QD algorithm [7] extends this approach by capturing diver-
sity in the VAE latent space. Leniabreeder’s unsupervised learning
techniques and automated feature discovery are fundamental to
enabling OE, allowing the system to adapt without human inter-
vention.

1.2 Open-Endedness
OE remains challenging to precisely define and measure, as true
open-ended behavior will transcend any predefined measures of
OE [12]. However, Banzhaf et al. [1] have proposed a framework in
which OE can be defined as three types of novelty:

• Type-0: Variation; novelty within the model.
• Type-1: Innovation; novelty that changes the model.
• Type-2: Emergence; novelty that changes the meta-model.

In this paper, we define OE as the continual production of novelty
of these types [1, 11, 13]. Our approach aims to promote Type-0 and
Type-1 novelty, utilizing Leniabreeder’s VAE latent space to capture
behavioral diversity within the population. Type-2 novelty remains
more difficult to observe, as novelty that changes the meta-model
will effectively move outside any predefined measure of OE. Hence,
attempting to quantify OE may be trivial [12], and we will instead
focus on exploring underlying mechanisms that promote OE.

1.3 Intrinsic Evolution
Systems that utilize internal mechanisms to guide evolution are
considered to be intrinsic, as the fitness landscape is shaped by the
system’s current state rather than progressing toward a predeter-
mined goal. Intrinsic evolution enables complexity and diversity to
emerge, mirroring the open-ended dynamics of natural evolution.
This approach is promising in its ability to guide systems toward

meaningful innovation, and has been shown to promote OE in
foundational ALife literature.

Novelty search [8], for instance, abandons objectives and instead
rewards behavioral novelty. This approach demonstrates efficacy in
tasks such as maze navigation and biped locomotion. By abandon-
ing explicit fitness objectives, novelty search enables a continual
increase in complexity. This concept is extended in Flow Lenia,
a mass-conservative extension of Lenia, where Plantec et al. [9]
enable multi-species simulations to drive intrinsic evolutionary
processes through competition and symbiosis. Furthermore, Reinke
et al. [10] explore intrinsically motivated goal exploration processes
(IMGEPs) in self-organizing systems like Lenia, emphasizing the au-
tomated discovery of diverse patterns. Their IMGEP-OGL algorithm
utilizes deep auto-encoders and achieves efficiency comparable to
pretrained systems, highlighting the power of unsupervised learn-
ing in uncovering novel self-organized structures.

Together, these approaches emphasize the potential for evolu-
tion driven by intrinsic processes and autonomous exploration to
replicate the open-ended creativity of natural systems. Decoupling
evolution from fixed objectives has proven to aid the emergence of
life-like behaviors in artificial environments. We utilize this philos-
ophy in the design of our multi-objective fitness mechanism.

2 METHODOLOGY
We evaluate individuals with respect to three objectives: home-
ostasis, distinctiveness, and population sparsity. These objectives
capture notions of behavioral diversity within the population and
promote individuals with complex internal structure in underex-
plored regions of the descriptor space. Their intrinsic nature allows
the system to evolve in accordance with its own evolutionary ac-
tivity.

Homeostasis rewards stable artificial lifeforms, comparable to
those in biological life. We calculate latent variance of an individ-
ual, measuring stability in the latent space representation across n
timesteps

𝑓1 = − 1
𝑛

𝑛∑︁
𝑖=1

|®𝑧𝑖 − ®̄𝑧 | (1)

where ®𝑧𝑖 are latent encodings and ®̄𝑧 is their mean. Distinctiveness
encourages novelty relative to preexisting individuals. We calculate
latent mean distance, measuring divergence from average behavior

𝑓2 = | ®̄𝑧 − E[®̄𝑧] | (2)

where ®̄𝑧 is the mean latent encoding of an individual. Sparsity
rewards individuals in underexplored regions of the descriptor
space. We calculate the density of the descriptor space using a
radial basis function (RBF) kernel

𝑓3 = −
∑︁

𝑎∈archive
exp

(
− | ®𝑑 − ®𝑑𝑎 |2

2𝜎2

)
(3)

where ®𝑑 is the descriptor vector and 𝜎 is the kernel width.
We implement a domination count fitness mechanism to rank

members of the population against those in the archive — the set
of previously generated patterns — based on these objectives. Dom-
ination count of an individual x is calculated as

𝑑 (𝑥) = |{𝑦 ∈ 𝐴 | 𝑦 ≺ 𝑥}| (4)
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where A is the set of archived individuals. An individual y is said
to dominate x if y is better than or equal to x in all objectives,
and strictly better in at least one objective. The final fitness score
of an individual is their negative domination count, so solutions
dominated by fewer archive members are considered fitter. This ap-
proach maintains a diverse set of individuals representing different
trade-offs between objectives, thereby fostering greater exploration
of the solution space. By ranking individuals against each other,
there is no pressure on the system to converge toward a final goal
[8].

We compare our multi-objective domination count approach to
a single-objective fitness function optimizing for homeostasis. We
conducted 50 trials for each approach, evolving 2500 generations
with batch sizes of 256 and a repertoire size of 1024.We recorded the
average mass, repertoire variance, and complexity of individuals
in the final populations. Mass is calculated as the zeroth spatial
moment, or total sum of all cell values, representing the total life
content in a pattern. Repertoire variance is calculated as the latent
variance across solutions for the last timestep, giving a measure of
phenotypic diversity. Finally, we calculate complexity as the gzip
compression size of phenotypes across all frames. This serves as an
approximation of Kolmogorov complexity, the size of the shortest
program that can reproduce a pattern’s behavior.

3 RESULTS
Our multi-objective approach displayed increased mass and vari-
ance with greater compressibility compared to the baseline imple-
mentation. Table 1 summarizes the quantitative results from our
experiments.

Metric Baseline Multi-Objective Δ
Mass 3.268 3.292 +0.73%

Variance 1.093 1.103 +0.91%
Complexity 3.861 3.820 -1.06%

Table 1: Results of baseline homeostasis and multi-objective
fitness mechanisms across all individuals in final repertoire.

These results indicate enhanced evolutionary dynamics, poten-
tially fostering greater OE. The 0.73% increase in average mass
suggests that our approach successfully preserved life content and
potentially adaptive traits. Similarly, the 0.91% increase in reper-
toire variance confirms greater diversity within the population. The
observed 1.06% reduction in complexity, coupled with increased
mass and variance, points to the emergence of patterns exhibiting
greater modular internal structure. This reduced compression size
underscores that trivial complexification is avoided as the system
continually innovates without converging on a fixed goal. Though
improvements are modest, the deviation in average mass, variance,
and complexity between the two approaches demonstrates statis-
tical significance with p < 0.001 using a two-sample t-test. These
results highlight the effectiveness of intrinsic multi-objective opti-
mization in enabling greater open-ended behavior.

We observed subtle qualitative differences between the approaches,
and attribute diversity in the baseline approach to the AURORA QD
algorithm. However, multi-objective optimization yielded patterns

with greater structural variety and enhanced internal modularity,
displayed in Figure 3. Figure 2 showcases the behavior of such
patterns over multiple timesteps. These results suggest that multi-
objective optimization of intrinsic objectives may promote greater
variation and innovation within the population. By simultaneously
optimizing for homeostasis, distinctiveness, and sparsity, the sys-
tem generates novelty while preserving stability. This balance is
essential for sustaining a population of diverse artificial lifeforms.

Figure 2: Temporal progression of three patterns starting
from the “Aquarium” phenotype (pattern id 5N7KKM) [4, 6].

4 FUTUREWORK
Our findings highlight several promising directions for future re-
search. We intend to apply established measures of open-ended
dynamics, such as Bedau and Packard’s evolutionary activity test
[2] and the MODES toolbox [5], to quantify OE in our system. We
posit that more comprehensive measures of OE will offer important
insights into the open-ended nature of these systems. Additionally,
we aim to explore homeodynamic regulation in place of homeosta-
sis, potentially fostering artificial lifeforms with more intricate and
adaptive internal structures. We plan to introduce environmental
pressures to assess the system’s adaptive complexity, hypothesizing
that dominance ranking of intrinsic objectives will outperform a
baseline QD algorithm in discovering innovative solutions. Lastly,
given that our current experiments capture only the early stages
of evolution, we anticipate that extended generational spans could
magnify differences in diversity and innovation between the ap-
proaches.

5 CONCLUSION
This study demonstrates that intrinsic multi-objective optimization
offers a promising step toward achieving open-ended evolution
in ALife systems. By designing fitness objectives reminiscent of
biological systems, both Type-0 and Type-1 novelty are encouraged.
By ranking individuals against each other, we enable greater diver-
sity and exploration of the search space. The theoretical advantages
of this approach, coupled with experimental results, indicate that
multi-objective optimization can enable innovation by continually
driving systems toward novelty.
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Figure 3: Columns 1-4 display patterns evolved through multi-objective ranking, while columns 5-8 display patterns evolved
through homeostasis fitness and the AURORA QD algorithm.

Our contribution extends beyond performance gains to offer
a methodological framework for enabling OE by promoting au-
tonomous exploration and decreasing reliance on manual feature
design. By aligning selection pressures with intrinsic characteris-
tics of living systems, we foster ongoing innovation akin to natural
evolution. Our approach represents a step toward understanding
the mechanisms that enable complexity in biological evolution
and applying them to artificial systems, bringing us closer to true
open-ended behavior in ALife.
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